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Abstract. Timonov proposes an algorithm for global maximization of univariate Lipschitz functions in 
which successive evaluation points arc chosen in order to ensure at each iteration a maximal expected 
reduction of the “region of indeterminacy”, which contains all globally optimal points. It is shown that 
such an algorithm does not necessarily converge to a global optimum. 
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1. Introduction 

We consider the global maximization of a univariate Lipschitz function f over an 
interval [u, b]: 

xp,f~l fW 9 

the function f satisfying the condition: 

V%YEL%bl l.fw-.f-~Y~l~~l~-Yl 
where L is a constant. 

Many algorithms have been proposed to solve (1). The best known of them is 
probably that of Piyavskii [4,5] and Shubert [7]. A survey of these algorithms is 
given in Hansen, Jaumard and Lu [l]; a new one and comparative computational 
experiments are described in [2]. 

Piyavskii’s algorithm uses and updates a piecewise-linear upper bounding 
function F which coincides with f at each evaluation point. The lines of F have 
slopes L or -L. Due to its shape, we call F a ~UIV-&O& cover of& Moreover, we 
call the part of F between two successive evaluation points xj, X~+~ on [u, b] a 
tooth of which xi and X~+~ are the basis points. The highest point of this tooth, 
called its peak, is reached at the peak point xP,. At each iteration of Piyavskii’s 
algorithm the highest point of F is considered and an evaluation off takes place at 
the corresponding peak point. Then F is updated. The algorithm stops when the 
difference between the upper bound on f given by F and the value of the best 
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known solution does not exceed a given positive real number .s. The rules of 
Piyavskii’s algorithm may be expressed in pseudo-code as follows: 

PIYAVSKII’S ALGORITHM 

Piyavskii’s saw-tooth cover 

While FOpt - fopt > c do 

EndWhile. 

Timonov [9] proposes an algorithm for (1) which is very close to that of Piyavskii, 
but based on completely different rationale. Timonov focuses on the region of 
indeterminacy which is defined as follows. Consider a piecewise-linear upper- 
bounding funtion F and the best known value fopt = f(xopt) of f. Draw an 
horizontal line of height fopt (see Figure 1). Clearly, no region of [a, b] where 
F < fopt may contain a globally optimal point. The complementary set, i.e., the 
union of the subintervals of [a, b] on which F >fopt constitutes the region of 
indeterminacy. Timonov proposes to choose at each iteration the new evaluation 
point which will ensure the maximal reduction in the expected length of the 
region of indeterminacy. Of course, to allow to make this choice, an assumption 
must be made on the distribution of possible values of points in [a, b]. Timonov 
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Fig. 1, Region of indeterminacy. 

assumes that all values compatible with the Lipschitz condition (2) are equally 
probable. He states that the best choice is then to evaluate f at the peak point 
corresponding to the maximum of F. In the next Section, we show that this is not 
necessarily the case but that some peak point in the region of indeterminacy 
satisfies Timonov’s criterion. A more serious difficulty is discussed in Section 3, 
where it is shown that the corrected version of Timonov’s algorithm need not 
converge to a global optimum. Finally we discuss briefly in Section 4 a different 
modification to Piyavskii’s algorithm also proposed by Timonov, which is both 
theoretically and practically an improvement: using evaluation points among 
those of a pussive slrutegy, i.e., points of the set {u + (2p - 1): E [u, b], p E 
N+}. 

2. Evaluation Points 

Consider a saw-tooth cover of f obtained after k function evaluations at 
xl, x2,. . * > xk> which, after ranking, can be noted, yi < yX s. * .G yk. Let j&,t 
denote the best known solution, i.e. &,t = maxiZ1,2,. ,k j(xi). The horizontal 
line of height f&t intersects at most k - 1 teeth, leading to p G k - 1 intervals 

Laj7 13~1 (with P ossibly aj+i = pj) where a globally optimal point may be located. 
The total length of the so defined “region of indeterminacy” is Z(rik) = ETzl ( pj - 
CX~) (see Figure 1). 

Following Timonov’s criterion, the next evaluation point xk+l should be chosen 
in order to minimize the expected value of l(d+‘). This implies that an 
assumption is made on the distribution of possible values off at any point xk+r in 

"j=l2 p [cx~, pj]. (Choosing xk+* elsewhere cannot improve &,t .) Timonov 
assumes a uniform distribution over the set of values compatible with the 
Lipschitz property of JY Thus the set of possible values for f at xk+i E [ yi, yi+i], 
where yi and yj+l are the evaluation points closest to xk+* on the left and on the 
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Fig. 2. Cases for reduction of an interval of indeterminacy. 

&W reactively, is Llk+l, uk+J = [maxIf - Gk+, - YA fCyj+A + 
-e/c+1 - Yi+lJl> mWfCyil + Uxk+l - ~~1, RY~+~) - J%~+~ - ~~+~I11 and the 
probability density is uniform over that interval (see Figure 2). 

Timonov proves that the first three evaluation points should be at x1 = G, X~ = LI 
and x3 = (a + b) /2 + ((f(b) -f(a)) /2.L), i.e. at the basis points and the peak 
point of the first tooth. He then states that: (i) evaluation points should be peak 
points of teeth; (ii) the peak point of the highest tooth of the current saw-tooth 
cover is optimal for his criterion. This leads him in fact to advocate the use of 
Piyavskii’s algorithm, To justify statements (i) and (ii), Timonov considers 
separately each interval of the region of indeterminacy. This, however, neglects 
the fact that if the function value at the new evaluation point is better than the 
incumbent, aZZ intervals of the region of indeterminacy are reduced. We next 
derive an expression of the expected reduction in total length of the region of 
indeterminacy, when f is evaluated at a given point xk+r. Using this expression, 
we then show that statement (i) is correct, but statement (ii) is not. 
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THEOREM 1. Consider a saw-tooth cover off over [a, b] with p teeth of height 
‘j=f~pt+‘j>f~pt~ j=L2,..-,P2 defining the region of indeterminacy 
Uy+ [aj, pj]. Zf f is evaZuated at ~k+~, with ~k+~ E[cq, /3J for some iE 
{L 2,. . . 9 p} and with possible values in [Zk+I, ~k+~] the expected reduction in 
total length of the region of indeterminacy is: 

A= 
1 

uuk+l - lk+l) 
‘k+l - ‘k+l 

‘k+l - ‘k+l 

2 + x min{uk+l -fOpt? dj}(2(uk+l -fOpt) 
j#i 

- 
min{uk+l -fOpt, 'jll] . (3) 

Proof. We first consider the reduction in the interval of indeterminacy [q, /$] 
for i E {l, 2,. . . , p} in which xk+r is chosen. Four cases must be considered: 

Cal 'k+l <f@k+I) G max{zk+l~ ‘k+l - 2di}; the whole interval, of length 
Ai = 2di/L, is eliminated. (Note that this case only occurs when lk+l < 

‘k+l - 2di*) 

cb) max{zk+12 uk+l - 2di} s f(xk+l) s 2fOpt - uk+r; the length of the interval is 
reduced by Bi = (uk+r - f(xk+l))/L. 

cc) ‘fqt - ‘k+l sftxk+l) <fopI; the length of the interval is reduced by 

‘i = '(fc,pt - f@k+l))‘L. 
cd) fopt sf(xk+l) s 'k+li the length of the interval is reduced by 

Di = ‘(f@k+l) -fopt)lL. 

The four cases are illustrated on Figure 2. The reduction in length of the 
intervals [cx~, bj], j = 1,2, . . . , p, j # i, is zero in cases (a), (b) and (c) and, two 
subcases arise in case (d): 

fopt s f(xk+l) c fopt + dj; the length of the interval [aj, pj] is reduced by 

D; = 2(f@k+I) -fopt)‘L. 
fopt+djsf(xk+l)G ‘k+li the whole interval, of length DT = 2dj/L, is 
eliminated. 

The expected reduction in total length is: 

Integrating this expression and simplifying it leads to (3). 
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COROLLARY 1. Z~X,‘+~ is chosen in the interval [q, pi], A reaches its maximum 
when the new evaluation point corresponds to the peak point, i.e. x~+~ = xr,.. 

Proof. Let u~+~ = fOpt + d, where d is a non negative parameter with maximal 
value dj, reached when xk+r coincides with the peak point xpi. Then Zk+I = 
fort - d - ej where ei is a non negative constant. Substituting Us+* and lk+r by 
these values in (3) leads to: 

A = AI + AZ , 

where: 

AI = L(2i+ei) [2min{di,d+;}(2d+ei-min{di,d+$])], (4) 

and 

If min{dj, d + ei/2} = dj, then AI = (l/L)(2di -(2df)/(2d + ej)) and other- 
wise AI = (l/L)(d + ei/2). If min{d, dj} = dj, the jth term in the summation of 
A* is equal to (l/L)(dj(2d - dj)/(2d + e;)), and otherwise to (l/L)(d’/ 
(2d + ej)). Partial derivatives with respect to d of AI and A* are then easily shown 
to be positive in all cases. Hence, A increases in d, from which the corollary 
follows. 0 

COROLLARY 2. Zfxk+r is chosen in Uizl,2,, ,~ [ cq, pi], A reaches its maximum 
when the new evaluation point corresponds to the peak point x~~ of a tooth, which is 
not necessarily the highest one. Hence: 

2di 2d; 1 
L L(2di + ej) i- L(2dj + ei) i+j 

z min{di, dj} 

x (2di - min{ dj, di}) 

where ei = Z( fOpt - max{ftyA f~~~+~~~~~ yl and ~t+~ being the basis points of the 
tooth whose intersection with the horizontal line of height fopt is [cq, pi]. 

Proof. The first proposition is a direct consequence of Corollary 1. The 
expression (6) is obtained from (4) and (5) with d = di. 

The following example shows that the evaluation point which maximizes A is 
not always the peak of the highest tooth of the saw-tooth cover. Consider a 
Lipschitz function f with L = 1 defined over the interval [-8,8]. Assume f(--8) = 
f(0) = f(4) = f(8) = 0 and f(-5.4) = f(-4) = f(-2.6) = 1.2. Timonov’s algorithm 
chooses the first seven evaluation points at x1 = -8, x2 = 8, x3 = 0, x4 = -4, 
x5 = 4, x6 = -5.4 and x7 = -2.6. The saw-tooth cover after seven iterations is 

‘7tx) = mini=l,*, ,7 {f(xi)+ lxpxil}~ P re resented on Figure 3. The next evalua- 
tion point would be at x8 = 2 which gives A = 2.07. However, choosing x8 = -6.1 
leads to A = 2.45. q 
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Fig. 3. The peak point where A is maximum is not the highest one. 

3. Convergence 

As shown by Corollary 2, if Timonov’s criterion is adopted, one should choose as 
new evaluation point at each iteration the peak point of the tooth for which A is 
maximum, i.e. equal to the value AmaX of (6). Such a strategy, however, may not 
be convergent as we now show. Consider the following example: 

Let: 

I 

0 x E [O, 181 

18 -X 
f(x)= 

x E [18,24] 

x-30 x~[24,31] 

32 - x x E [31,38] . 

The first eleven evaluation points coincide with those of Piyavskii’s algorithm, 
i.e., they are at x1 = 0, x2 = 38, x3 = 16, x4 = 8, x5 = 24, x6 = 4, x7 = 12, x8 = 2, 



44 PIERRE HANSEN ET AL. 

x9 = 6 x10 = 10 and xii = 14. The region of indeterminacy is [O, 181 U [30,32] and 
all the ten teeth have the same height /zi = 1 (see Figure 4). Let us call 0th tooth 
the tooth with basis points at x5 = 24 and x2 = 38. We claim that this tooth will 
never be split. Hence the globally optimal value, which is equal to 1 for x = 31, 
will always remain greater by 1 than the incumbent. Indeed, no function 
evaluation over the interval [O, 181 will change the value of &, i.e. fOrt = 0. We 
have do = 1 and e. = 6. Let di = /zi - & = /ri denote the height of the highest 
tooth over [O, 181 at any iteration. We prove the claim by showing that Aj - A0 > 
0. We always have do 2 di 2 dj for all j = 1,2, . . . , k at any iteration k with 
k > 11. Notice that splitting a tooth different from the 0th one yields two teeth of 
half its height. Hence E ;= I dj = 9 for all k > 11. We have: 

In the case where the corrected version of Timonov’s algorithm does converge, 
the number of function evaluations will be very close to that of Piyavskii’s 

Fig. 4. Convergence to a local optimum 
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algorithm. Indeed, both algorithms choose peak points of teeth as new evaluation 
points and even if the tooth selected following Timonov’s criterion is not the 
highest, it will eventually be split by Piyavskii’s algorithm also at a further 
iteration. Empirical results show that in most cases, the numbers of function 
evaluations do not differ by more than one even for small E. 

4. Evaluation Points from a Passive Strategy 

Timonov also proposes to choose all evaluation points among those of a passive 
strategy, i.e., in the set {u + (2~ - l)f E [a, b], p E !V+}. (A similar suggestion 
was made independently by Schoen [6]). Evaluating fat all such points guarantees 
to obtain a point with an c-optimal value for any f satisfying (2) and the number 
of function evaluations to do that is minimum (Ivanov [3], Sukharev [8]). The 
only modificaiton to be made in Piyavskii’s algorithm to implement Timonov’s 
idea consists in replacing the instruction 

by a subroutine to find the point of a passive strategy which maximizes Fk(x). This 
can be done by finding the points from a passive strategy closest to the peaks of 
Fk(x) in all intervals in the region of indeterminacy. A quicker procedure, 
yielding very similar results, is just to consider the points of a passive strategy 
closest to xk+ 1 on the left and on the right and keep as new value for x~+~ that one 
of them with highest value. 

Timonov’s algorithm coincides with the passive algorithm in the worst case, 
i.e., for constant functions, and is then better than Piyavskii’s algorithm. In the 
vicinity of a very flat global optimum, or if high precision is required, most teeth 
of Timonov’s algorithm will have a height close to &, instead of one between e and 
&/2 for those of Piyavskii’s algorithm, and will hence be less numerous. Both 
algorithms, and others, are compared experimentally in [2]. It is found that 
Timonov’s modification of Piyavskii’s algorithm reduces the number of function 
evaluations by about 6%. 
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